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ABSTRACT 

T-optimality is a design criterion in model discrimination, aiming to maximize the power of a statistical test 

distinguishing between competing regression models. This article explores the use of T-optimality in the context 

of non-nested models, which do not share a common parameter space. We present the mathematical formulation, 

discuss its statistical properties, provide algorithmic considerations, and illustrate with numerical examples. 

Applications span medicine, engineering, and economics, where selecting the best predictive model is crucial. 
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INTRODUCTION 

Model selection plays a crucial role in statistical 

modeling, serving as a foundation for reliable 

inference, prediction, and decision-making. 
Traditional model comparison criteria such as the 

Akaike Information Criterion (AIC) and the 

Bayesian Information Criterion (BIC) have been 

widely used due to their solid theoretical properties 

and practical simplicity. However, these criteria are 

primarily designed for comparing nested 

modelsmodels where one is a special case or subset 

of the other. In many real-world applications, 

researchers are faced with the challenge of selecting 

among competing models that are non-nested, 

meaning that the models do not lie within a 
hierarchical or subset relationship. Examples 

include choosing between different functional 

forms, competing growth models, or fundamentally 

different distributions that explain the same 

phenomenon. 

In such scenarios, classical model comparison 

approaches may be inadequate or misleading. This 

has motivated the development of discrimination 

designs, which aim to optimize experimental or 

sampling strategies explicitly for distinguishing 

between non-nested models prior to data collection. 

By carefully selecting the points or conditions under 

which data are gathered, discrimination designs 

enhance the ability to correctly identify the true 
model, thereby improving the efficiency and 

effectiveness of statistical analysis. 

Among discrimination design criteria, the T-

optimality criterion, originally introduced by 
atkinson, has emerged as a particularly powerful and 

versatile approach [1,2]. T-optimality focuses on 

maximizing the discrepancy between the competing 

models predictions, leading to experimental designs 

that highlight the differences most clearly. This 

contrasts with other design criteria that might 

prioritize estimation precision within a single model 

framework. 

Despite its appeal, applying T-optimality in 

practiceespecially for non-nested modelsposes 

challenges due to the need for solving complex 

optimization problems and dealing with potential 

model misspecification. Advances in computational 

algorithms, including numerical optimization and 

simulationbased methods, have made it increasingly 
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feasible to implement T-optimal designs in diverse 

applied settings. 

This paper aims to provide a comprehensive 

overview of the T-optimality criterion in the context 

of non-nested models. We begin with a theoretical 

review of the criterions foundations, highlighting its 

motivation, properties, and relationships to other 

design principles. Subsequently, we explore 

practical methodologies for constructing T-optimal 
designs, including recent developments in 

optimization algorithms [3]. Finally, through 

simulation studies and applied examples, we 

demonstrate the effectiveness of T-optimal designs 

in discriminating between non-nested models, 

providing insights into their implementation and 

interpretation. 

By addressing both theoretical and practical aspects, 

this work contributes to the broader understanding 

and application of optimal discrimination designs, 

with implications for fields ranging from biomedical 

research to engineering and economics [4]. 

Non-nested Models 

Let M1 and M2 be two competing regression models 

defined over a compact design space X. In a non-

nested scenario, neither model is a special case of the 

other. T-optimality seeks to find a design ξ* that 

maximizes the power of a test between M1 and M2. 

Non-nested models arise in many domains: 

 Medicine: Logistic vs. probit regression 

 Econometrics: Cobb-Douglas vs. translog 

production functions 

 Machine learning: Different neural 

network architectures 

Traditional likelihood-based tests fail in these cases 

due to the lack of a nesting relationship, motivating 

the need for T-optimality-based design. 

Theoretical/Methadological Foundations 

Let f1(x,θ1) and f2(x,θ2) be the mean functions of 

models M1 and M2, respectively. Assume that model 

M1 is true. The T-optimality criterion is defined as: 

 

Here, ξ is a probability measure over X (a design), 

and θ1,θ2 are parameters of the respective models. 

The goal is to find a design ξ* such that: 

ξ *=argmaxΦT(ξ;θ1) ξ∈Ξ 

This design maximizes the minimum squared 

deviation between models over the design space, 

ensuring good power for model discrimination. 

Equivalence theorem 

Let f1i=f1(xi,θ 1), f2i(θ2)=f2(xi,θ2). A design ξ ∗ is T-

optimal iff there exists a minimizing θˆ2 such that: 

[f1(x,θ1)-f2(x,θˆ2)]2 ≤ ∫ [f1(x,θ1)-f2(x,θˆ2)]2d ξ ∗(x)

 ∀x ∈ X 

Because of the infimum over θ2, the criterion is non-

convex and must be solved iteratively. Standard 

algorithms include: 

 Exchange algorithms 

 rsolnp / SQP solvers in R or MATLAB 

 Gradient descent with smoothing 

techniques 

Simulation example 

Consider the models: 

M1: f1(x)=θ10 +θ11
x 

M2: f2(x)=θ20+θ21e-x 

Let X=[0,1]. Fix θ1=(1,2), and solve: 

 

Using numerical optimization, the T-optimal design 

concentrates support on [0,0.5,1.0] with weights 

approximately (0.25,0.5,0.25), suggesting these 

points are most informative for discrimination [5]. 

Non-nested models in medical studies 

In modern medical research, predictive modeling 

plays a crucial role in diagnosis, prognosis, and 

treatment recommendation. Researchers often need 

to choose between competing statistical models 

based on their performance and interpretability. In 

many cases, the models under comparison are non-

nested, meaning that one model cannot be derived as 

a special case of the other by parameter restriction. 

Traditional criteria such as the Akaike Information 

Criterion (AIC) or Bayesian Information Criterion 
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(BIC) provide model comparison tools, but they do 

not inform how to design an experiment or dataset 

to best distinguish between the models. This is 

where T-optimality becomes essential [6,7]. 

T-optimal designs aim to select the experimental 

settings (e.g., levels of clinical features) that 

maximize the ability to differentiate between two 

rival models. Originally developed within the 

context of nested models, T-optimality has been 
extended to non-nested settings and found 

application in areas such as pharmacokinetics, 

epidemiology, and diagnostic model selection. 

This study applies T-optimal design methodology to 
real-world medical data, specifically the Pima 

Indians Diabetes dataset. Our goal is to determine 

the most informative settings for discriminating 

between logistic and probit regression models based 

on glucose and other physiological variables. In 

statistical modeling, two models are considered 

nested if one can be obtained from the other by 

fixing certain parameters. However, in many 

practical applications especially in medical data 

analysis researchers must choose between models 

that are structurally different and cannot be obtained 

from one another by parameter constraints. These 

are known as non-nested models. 

A classic example includes the logistic and probit 

regression models, both used to model binary 

outcomes (such as presence or absence of a disease) 
based on predictor variables like glucose 

concentration or BMI. Though both rely on a 

cumulative distribution function to model 

probabilities, their link functions differ: 

 

 Logistic regression uses the logistic 

(sigmoid) function: 

 Probit regression uses the Cumulative 
Distribution Function (CDF) of the 

standard normal distribution: Φ(x) 

Application to Medical Data 

Dataset description 

To illustrate the application of T-optimality, we use 

the well-known Pima Indians Diabetes dataset, 

which is widely used in medical diagnostics and 

machine learning. The dataset contains clinical data 

from 768 female patients of Pima Indian heritage, 
aged 21 years and older. Each record contains the 

following 8 features: 

• Number of pregnancies 

• Plasma glucose concentration 
• Diastolic blood pressure (mm Hg) 

• Triceps skinfold thickness (mm) 

• 2-Hour serum insulin (mu U/ml) 

• Body mass index (BMI) 

• Diabetes pedigree function 

• Age (years) 

The binary target variable indicates whether the 

patient tested positive for diabetes (1) or not (0). 

Data preprocessing 

We applied the following preprocessing steps: 

• Removal of records with physiologically 

invalid zero values for glucose, blood 
pressure, or BMI. 

• Normalization of numerical features to 

zero mean and unit variance. 

• Splitting data into training (70%), 

validation (15%), and testing (15%) 

subsets. 

Modeling: Logistic vs probit regression 

We fit both a logistic regression model and a probit 
regression model to the training data. The response 

variable is diabetes status (1=diabetic, 0=non-

diabetic), and the predictors include glucose level, 

Mody Mass Index (BMI), and age. 

 Logistic Model: 

logit(P(Y=1)) = 

β0+β1·glucose+β2·BMI+β3.age 

 Probit Model: 

Φ-1(P(Y=1)) = 

γ0+γ1·glucose+γ2·BMI+γ3.age 

Both models were trained using maximum 

likelihood estimation. The estimated parameters 

were then used to compute predicted probabilities on 

a test grid of glucose values for T-optimality 

analysis. 

T-Optimal Design for Model Discrimination 

To discriminate between the logistic and probit 

regression models, we applied the T-optimality 

criterion. For a given design ξ defined over predictor 

space x (e.g., glucose values), the goal is to 

maximize the squared difference in predicted 

probabilities between the two models: 

ΨT(ξ)=∫ (pˆlogit(x)-pˆprobit(x))2d ξ (x) 



__________________________________________________________________________________________ 

© 2025 Anita AN. This is an open-access article distributed under the terms of the Creative Commons 

Attribution License (CC BY 4.0). 
4 

We evaluate this expression on a dense grid of 

glucose values ranging from 50 to 200 mg/dL. At 

each point x, we compute the predicted probability 

of diabetes from both models: 

 

1 

pˆlogit(x)= 
−(β0+β1x), 

pˆprobit(x)=Φ(γ0 + γ1x) 1+e 

The squared difference (pˆlogit(x) − pˆprobit(x))2 is 

computed at each x, and the points where this 

difference is maximized are selected as T-optimal 

design points. 

RESULTS OF MODEL DISCREPANCY 

As shown in Table 1, the largest discrepancies occur 

between glucose levels of 125 and 165 mg/dL. These 

points are most informative for distinguishing 

between the models and thus form the optimal 

design for model discrimination (Table 1). 

Table 1: Squared differences in predicted probabilities (T-optimal points). 

Glucose (mg/dL) P ˆ logit P ˆ probit (∆ˆ p)2 

105 0.412 0.387 0.00063 

125 0.614 0.574 0.00160 

145 0.786 0.731 0.00303 

165 0.894 0.843 0.00260 

 

Model evaluation and prediction accuracy 

Performance metrics 

To evaluate the predictive performance of the 

logistic and probit models, we used the test subset 

(15% of the data) and computed the following 

evaluation metrics: 

• Accuracy: The proportion of correctly 

classified cases. 

• Precision: The proportion of positive 

predictions that are correct. 

• Recall (Sensitivity): The proportion of 
actual positives that are correctly 

identified. 

• AUC (Area Under the Curve): A summary 

of the ROC curve that represents overall 
model 

• discrimination. 

ROC curve analysis 

Figure 1 displays the Receiver Operating 

Characteristic (ROC) curves for both models. The 
logistic model shows slightly better discrimination 

between diabetic and non-diabetic cases. and 

summary of Model Performance is presented in 

(Figure 1) & Table 2. 
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Figure 1: ROC curve comparison of logistic and probit models 

Table 2: Performance comparison on the test set. 

Metric Logistic Regression Probit Regression 

Accuracy 78.4% 77.6% 

Precision 75.0% 73.8% 

Recall 80.2% 78.9% 

AUC 0.84 0.81 

 

Summary of model performance 

The logistic regression model slightly outperformed 

the probit model in all evaluation metrics. Although 

both models provided comparable results, the 
logistic model yielded higher AUC and recall, 

making it more favorable for medical screening 

where false negatives are critical. 

In practice, either model can be used depending on 
the underlying assumptions. However, using T-

optimality for design selection helped to focus data 

collection in regions where the models diverge most, 

leading to more informed model choice. 

CONCLUSION 

In medical applications, particularly diagnostic 

testing, the cost of misclassification is often high. 

Therefore, choosing the best predictive model is not 

just statistically important, but also clinically 

critical. T-optimal design helps identify regions of 

the feature space (e.g., glucose levels) where the 

predictions of two candidate models diverge the 

most. These regions are the most informative for 

deciding which model is more appropriate, 

especially when models are non-nested. T-

optimality serves as a key tool in the design of 

experiments when the goal is to discriminate 

between non-nested models. Its theoretical rigor and 

practical relevance make it suitable across a wide 
array of disciplines. Future work may focus on 

combining T-optimality with machine learning, 

Bayesian inference, and robust optimization for 

more flexible and efficient design strategies. While 

T-optimality provides a powerful framework for 

model discrimination, challenges remain: 

• Sensitivity to prior parameter values 

• Computational complexity 

• Extension to multivariate and 

heteroscedastic settings 

Recent work explores Bayesian T-optimality, robust 

design, and adaptive discrimination designs as 

potential solutions. In this study, we demonstrated 

the use of T-optimality for discriminating between 

two non-nested regression models logistic and probit 

using real medical data from a diabetes screening 

context. 

Our results showed that: 

• The logistic and probit models provide 

similar predictive performance. 

• The T-optimal design effectively identified 

glucose ranges (125–165 mg/dL) where 

model predictions diverge the most. 
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• Logistic regression slightly outperformed 

probit in terms of AUC and recall. 

The T-optimal design suggests that collecting new 

data or performing experiments at carefully chosen 

points where the competing models differ most 

significantly maximizes the ability to discriminate 

between these models. By targeting these points, 

researchers can efficiently gather information that 

highlights the contrasts, thereby improving the 

power of statistical tests and reducing uncertainty in 

model selection. This approach contrasts with 

traditional designs focused solely on parameter 
estimation within a single model and offers a more 

strategic allocation of resources when the primary 

goal is model discrimination.
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