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ABSTRACT

T-optimality is a design criterion in model discrimination, aiming to maximize the power of a statistical test
distinguishing between competing regression models. This article explores the use of T-optimality in the context
of non-nested models, which do not share a common parameter space. We present the mathematical formulation,
discuss its statistical properties, provide algorithmic considerations, and illustrate with numerical examples.
Applications span medicine, engineering, and economics, where selecting the best predictive model is crucial.

Keywords: T-optimality; Non-nested models; Model selection; Logistic regression; Probit regression

INTRODUCTION

Model selection plays a crucial role in statistical
modeling, serving as a foundation for reliable
inference, prediction, and decision-making.
Traditional model comparison criteria such as the
Akaike Information Criterion (AIC) and the
Bayesian Information Criterion (BIC) have been
widely used due to their solid theoretical properties
and practical simplicity. However, these criteria are
primarily  designed for comparing nested
modelsmodels where one is a special case or subset
of the other. In many real-world applications,
researchers are faced with the challenge of selecting
among competing models that are non-nested,
meaning that the models do not lie within a
hierarchical or subset relationship. Examples
include choosing between different functional
forms, competing growth models, or fundamentally
different distributions that explain the same
phenomenon.

In such scenarios, classical model comparison
approaches may be inadequate or misleading. This
has motivated the development of discrimination
designs, which aim to optimize experimental or

sampling strategies explicitly for distinguishing
between non-nested models prior to data collection.
By carefully selecting the points or conditions under
which data are gathered, discrimination designs
enhance the ability to correctly identify the true
model, thereby improving the efficiency and
effectiveness of statistical analysis.

Among discrimination design criteria, the T-
optimality criterion, originally introduced by
atkinson, has emerged as a particularly powerful and
versatile approach [1,2]. T-optimality focuses on
maximizing the discrepancy between the competing
models predictions, leading to experimental designs
that highlight the differences most clearly. This
contrasts with other design criteria that might
prioritize estimation precision within a single model
framework.

Despite its appeal, applying T-optimality in
practiceespecially for non-nested modelsposes
challenges due to the need for solving complex
optimization problems and dealing with potential
model misspecification. Advances in computational
algorithms, including numerical optimization and
simulationbased methods, have made it increasingly
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feasible to implement T-optimal designs in diverse
applied settings.

This paper aims to provide a comprehensive
overview of the T-optimality criterion in the context
of non-nested models. We begin with a theoretical
review of the criterions foundations, highlighting its
motivation, properties, and relationships to other
design principles. Subsequently, we explore
practical methodologies for constructing T-optimal
designs, including recent developments in
optimization algorithms [3]. Finally, through
simulation studies and applied examples, we
demonstrate the effectiveness of T-optimal designs
in discriminating between non-nested models,
providing insights into their implementation and
interpretation.

By addressing both theoretical and practical aspects,
this work contributes to the broader understanding
and application of optimal discrimination designs,
with implications for fields ranging from biomedical
research to engineering and economics [4].

Non-nested Models

Let M, and M, be two competing regression models
defined over a compact design space X. In a non-
nested scenario, neither model is a special case of the
other. T-optimality seeks to find a design &* that
maximizes the power of a test between M; and Mo.

Non-nested models arise in many domains:

e Medicine: Logistic vs. probit regression

e Econometrics: Cobb-Douglas vs. translog
production functions

e Machine learning: Different neural
network architectures

Traditional likelihood-based tests fail in these cases
due to the lack of a nesting relationship, motivating
the need for T-optimality-based design.

Theoretical/Methadological Foundations

Let fi(x,0:) and f2(x,0,) be the mean functions of
models M; and M,, respectively. Assume that model
M, is true. The T-optimality criterion is defined as:

Op(€;0,) = inf /X[fl(:rj.ﬁl) — fo(z, 02)? dé(2)

02603

Here, & is a probability measure over X (a design),
and 01,0, are parameters of the respective models.

The goal is to find a design & such that:

Equivalence theorem

Let f1i=f1(Xi,9 1), f21(92)=f2(xi,92). A design &* is T-
optimal iff there exists a minimizing 6" such that:

Because of the infimum over 0,, the criterion is non-
convex and must be solved iteratively. Standard
algorithms include:

e Exchange algorithms
rsolnp / SQP solvers in R or MATLAB
Gradient  descent  with  smoothing
techniques

Let X=[0,1]. Fix 6,=(1,2), and solve:

3

Using numerical optimization, the T-optimal design
concentrates support on [0,0.5,1.0] with weights
approximately (0.25,0.5,0.25), suggesting these
points are most informative for discrimination [5].

Non-nested models in medical studies

In modern medical research, predictive modeling
plays a crucial role in diagnosis, prognosis, and

¢ "=argmax®T(&;01) cEE

This design maximizes the minimum squared
deviation between models over the design space,
ensuring good power for model discrimination.

[£1(x,01)-f2(x,0"2)]2 < J [fi(x,01)-F(x,0"2)Ad & *(x)
vx e X

Simulation example

Consider the models:
M;: fi(x)=010 +611*
May: £(x)=020+02:e™

maxi{?z /0 [fi(x) — fola, 02)]?dé ()

treatment recommendation. Researchers often need
to choose between competing statistical models
based on their performance and interpretability. In
many cases, the models under comparison are non-
nested, meaning that one model cannot be derived as
a special case of the other by parameter restriction.

Traditional criteria such as the Akaike Information
Criterion (AIC) or Bayesian Information Criterion
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(BIC) provide model comparison tools, but they do
not inform how to design an experiment or dataset
to best distinguish between the models. This is
where T-optimality becomes essential [6,7].

T-optimal designs aim to select the experimental
settings (e.g., levels of clinical features) that
maximize the ability to differentiate between two
rival models. Originally developed within the
context of nested models, T-optimality has been
extended to non-nested settings and found
application in areas such as pharmacokinetics,
epidemiology, and diagnostic model selection.

This study applies T-optimal design methodology to
real-world medical data, specifically the Pima
Indians Diabetes dataset. Our goal is to determine
the most informative settings for discriminating
between logistic and probit regression models based
on glucose and other physiological variables. In
statistical modeling, two models are considered
nested if one can be obtained from the other by

Application to Medical Data
Dataset description

To illustrate the application of T-optimality, we use
the well-known Pima Indians Diabetes dataset,
which is widely used in medical diagnostics and
machine learning. The dataset contains clinical data
from 768 female patients of Pima Indian heritage,
aged 21 years and older. Each record contains the
following 8 features:

*  Number of pregnancies

*  Plasma glucose concentration

» Diastolic blood pressure (mm Hg)
*  Triceps skinfold thickness (mm)

e 2-Hour serum insulin (mu U/ml)
*  Body mass index (BMI)

» Diabetes pedigree function

*  Age (years)

The binary target variable indicates whether the
patient tested positive for diabetes (1) or not (0).

Data preprocessing

We applied the following preprocessing steps:

T-Optimal Design for Model Discrimination

To discriminate between the logistic and probit
regression models, we applied the T-optimality
criterion. For a given design & defined over predictor

fixing certain parameters. However, in many
practical applications especially in medical data
analysis researchers must choose between models
that are structurally different and cannot be obtained
from one another by parameter constraints. These
are known as non-nested models.

A classic example includes the logistic and probit
regression models, both used to model binary
outcomes (such as presence or absence of a disease)
based on predictor variables like glucose
concentration or BMI. Though both rely on a
cumulative  distribution  function to model
probabilities, their link functions differ:

1

U(l’)zm

e Logistic regression uses the logistic
(sigmoid) function:

e Probit regression uses the Cumulative
Distribution Function (CDF) of the
standard normal distribution: ®(x)

* Removal of records with physiologically
invalid zero values for glucose, blood
pressure, or BMI.

* Normalization of numerical features to
zero mean and unit variance.

» Splitting data into training (70%)),
validation (15%), and testing (15%)
subsets.

Modeling: Logistic vs probit regression

We fit both a logistic regression model and a probit
regression model to the training data. The response
variable is diabetes status (1=diabetic, O=non-
diabetic), and the predictors include glucose level,
Mody Mass Index (BMI), and age.

e Logistic Model:
logit(P(Y=1)) =
BotP1-glucose+P,-BMI+f3 age
e  Probit Model:
O-1(P(Y=1)) =
Yoty1-glucose+y, - BMI+ys.age

Both models were trained using maximum
likelihood estimation. The estimated parameters
were then used to compute predicted probabilities on
a test grid of glucose values for T-optimality
analysis.

space x (e.g., glucose values), the goal is to
maximize the squared difference in predicted
probabilities between the two models:

YT(E) (p"logit(x)-pprobit(x))’d & (x)
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We evaluate this expression on a dense grid of
glucose values ranging from 50 to 200 mg/dL. At

pAlogit(X) =

each point x, we compute the predicted probability
of diabetes from both models:

=(Bo+p1x)

P probit(X) =P (yo + yiX) 1+e

The squared difference (p”logit(x) — p"probit(x))? is
computed at each x, and the points where this
difference is maximized are selected as T-optimal
design points.

RESULTS OF MODEL DISCREPANCY

As shown in Table 1, the largest discrepancies occur
between glucose levels of 125 and 165 mg/dL. These
points are most informative for distinguishing
between the models and thus form the optimal
design for model discrimination (Table 1).

Table 1: Squared differences in predicted probabilities (T-optimal points).

Glucose (mg/dL) P " logit P " probit (A~ p)?
105 0.412 0.387 0.00063
125 0.614 0.574 0.00160
145 0.786 0.731 0.00303
165 0.894 0.843 0.00260

Model evaluation and prediction accuracy
Performance metrics

To evaluate the predictive performance of the
logistic and probit models, we used the test subset
(15% of the data) and computed the following
evaluation metrics:

* Accuracy: The proportion of correctly
classified cases.

e Precision: The proportion of positive
predictions that are correct.

* Recall (Sensitivity): The proportion of
actual positives that are correctly
identified.

* AUC (Area Under the Curve): A summary
of the ROC curve that represents overall
model

»  discrimination.

ROC curve analysis

Figure 1 displays the Receiver Operating
Characteristic (ROC) curves for both models. The
logistic model shows slightly better discrimination
between diabetic and non-diabetic cases. and
summary of Model Performance is presented in
(Figure 1) & Table 2.
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ROC Curve Comparison of Logistic and Probit Models

tive Rate

Figure 1: ROC curve comparison of logistic and probit models

Table 2: Performance comparison on the test set.

Metric Logistic Regression Probit Regression
Accuracy 78.4% 77.6%
Precision 75.0% 73.8%

Recall 80.2% 78.9%

AUC 0.84 0.81

Summary of model performance

The logistic regression model slightly outperformed
the probit model in all evaluation metrics. Although
both models provided comparable results, the
logistic model yielded higher AUC and recall,
making it more favorable for medical screening
where false negatives are critical.

In practice, either model can be used depending on
the underlying assumptions. However, using T-
optimality for design selection helped to focus data
collection in regions where the models diverge most,
leading to more informed model choice.

CONCLUSION

In medical applications, particularly diagnostic
testing, the cost of misclassification is often high.

Therefore, choosing the best predictive model is not
just statistically important, but also clinically
critical. T-optimal design helps identify regions of
the feature space (e.g., glucose levels) where the
predictions of two candidate models diverge the
most. These regions are the most informative for
deciding which model is more appropriate,
especially when models are non-nested. T-
optimality serves as a key tool in the design of
experiments when the goal is to discriminate

between non-nested models. Its theoretical rigor and
practical relevance make it suitable across a wide
array of disciplines. Future work may focus on
combining T-optimality with machine learning,
Bayesian inference, and robust optimization for
more flexible and efficient design strategies. While
T-optimality provides a powerful framework for
model discrimination, challenges remain:

*  Sensitivity to prior parameter values

+  Computational complexity

»  Extension to multivariate and
heteroscedastic settings

Recent work explores Bayesian T-optimality, robust
design, and adaptive discrimination designs as
potential solutions. In this study, we demonstrated
the use of T-optimality for discriminating between
two non-nested regression models logistic and probit
using real medical data from a diabetes screening
context.

Our results showed that:

* The logistic and probit models provide
similar predictive performance.

*  The T-optimal design effectively identified
glucose ranges (125-165 mg/dL) where
model predictions diverge the most.
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* Logistic regression slightly outperformed
probit in terms of AUC and recall.

The T-optimal design suggests that collecting new
data or performing experiments at carefully chosen
points where the competing models differ most
significantly maximizes the ability to discriminate
between these models. By targeting these points,
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